Wlancards.ru

ПК техника, WI FI Адаптеры
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Волоконно-оптические линии связи

Волоконно-оптические линии связи

Основа любой волоконно-оптической линии связи (ВОЛС) — оптическое волокно. Само по себе оптическое волокно хрупкое, поэтому для его сохранности используют различные защитные элементы, которые объединены в общую конструкцию — оптический кабель. Помимо оптического кабеля, к пассивным элементам ВОЛС относят: оптические муфты, оптические кроссы (в том числе коннекторы и разъемы) и оптические сплиттеры (делители).

Прокладка ВОЛС

Пассивная часть ВОЛС представляет собой элементарный кабельный участок (ЭКУ). Строительные длины оптического кабеля соединяются между собой оптическими муфтами (прямыми или разветвительными), а на дальних концах этой трассы располагаются оптические кроссы (для дальнейшей коммутации) — это и есть ЭКУ. Весь процесс начинается с проектирования, далее следует строительство ВОЛС. В процессе постройки ВОЛС важным шагом является качественное производство работ по сварке оптики и измерениям ОВ.

Компоненты ВОЛС — распределительный кросс

К активным компонентам ВОЛС относят:

  • Оптический усилитель. Обеспечивает должную оптическую мощность полезного сигнала на дальние расстояния. Могут быть как электрическими (происходит следующие преобразование: оптический сигнал — электрический сигнал — оптический сигнал), так и полностью оптическими устройствами;
  • Оптический регенератор. При распространении сигнала по оптическому волокну на дальние расстояния происходит искажение его формы, регенератор восстанавливает первоначальную форму сигнала. Аналогично усилителям существуют электрические и оптические устройства;
  • Оптический лазер. В системах прямой модуляции — источник оптического излучения который преобразует электрический сигнал в оптический;
  • Оптический модулятор. В системах с непрямой модуляцией — устройство которое моделирует оптическую волну;
  • Оптический фотоприёмник. Устройство с помощью которого происходит оптоэлектронное преобразование из оптического сигнала в электрический.

Именно связка пассивных и активных компонентов обеспечивает ВОЛС непревзойдённую дальность и скорость передачи информации: голосовой связи, текстовых сообщений, видеопотока, данных и т. д.

Принцип работы ВОЛС основан на передаче света по оптическому волокну. Более подробно можно изучить в материале про одномодовое и многомодовое волокно.

Конструкция фотообъектива

Типы линз объектива

В какой-то степени устройство объектива фотоаппарата копирует человеческий глаз. Основная задача оптики — это фокусирование светового потока, идущего от различных объектов и формирование точки фокуса на светочувствительном материале. В устройстве оптики главную роль играют линзы. Это стеклянные пластины круглой формы, которым полировкой и шлифовкой придаётся определённая кривизна. Все фотолинзы делятся на следующие группы:

  • Выпуклые;
  • Двояковыпуклые;
  • Вогнутые;
  • Двояковогнутые.

В зависимости от направления кривизны, линзы могут быть собирающими и рассеивающими. Первые две группы являются собирающими. Они фокусируют световой поток в одну точку. Таким образом, роль оптики фотоаппарата может выполнять одна выпуклая фотолинза. Фотобъектив, имеющий устройство, состоящее из одной линзы, называется мениск. Такая простейшая оптическая система позволяет получить изображение предмета на светочувствительном материале, но оно будет невысокого качества. Дело в том, что кривизна оптического стекла меняется от периферии к центру, поэтому изображение объекта будет сильно искажено по краям кадра. Искажения картинки называются аберрации и могут быть хроматическими (цветовыми) и геометрическими.

Хроматические аберрации оптики

В первом случае вокруг предметов возникает цветная окантовка, нарушающая нормальное восприятие фотографии.

Типы дисторсии оптики объектива

Геометрические искажения связаны с тем, что лучи, проходящие через центральную и периферическую часть фотолинзы, преломляются под разными углами. Это влечёт за собой искривление прямых линий или дисторсию, которая бывает в форме бочки или подушки. Для того чтобы избавиться от всех видов аберраций, в оптический набор фотоаппарата устанавливают дополнительные линзы.

Читайте так же:
Зарядное устройство икеа отзывы

5 разных типов микроскопов и их применение

Как и многие другие технологические устройства, микроскопы имеют очень долгую историю. Самые ранние микроскопы содержали простое увеличительное стекло с малой мощностью (до 10 раз). Их использовали для наблюдения за маленькими насекомыми, такими как блохи.

Ранние версии оптических микроскопов были разработаны в конце 15 века. Хотя изобретатель неизвестен, за эти годы было сделано несколько заявлений. Использование микроскопов для исследования органических тканей появилось только в 1644 году.

Сегодня у нас есть микроскопы, которые могут обеспечить разрешение в 50 пикометров с увеличением до 50 миллионов раз, что достаточно для наблюдения ультраструктуры различных неорганических и биологических образцов.

Современные микроскопы можно классифицировать по-разному. Один из способов сгруппировать их — это способ их взаимодействия с образцами для создания изображений. Основываясь на том же факторе, мы перечислили 5 основных типов микроскопов и их использование.

1. Оптические микроскопы

Оптические микроскопы являются наиболее распространенными микроскопами, которые используют свет, чтобы пройти через образец для генерации изображений. Они могут иметь очень простую конструкцию, хотя сложные оптические микроскопы направлены на повышение разрешения и контрастности образца.

В дальнейшем их можно подразделить на два типа: простые и сложные микроскопы. Простой микроскоп использует одну линзу (например, увеличительное стекло) для увеличения, в то время как сложные микроскопы используют несколько линз для увеличения образца.

Они часто оснащены цифровой камерой, поэтому образец можно наблюдать с помощью компьютера. Это позволяет провести глубокий анализ микроскопического изображения.

Оптические микроскопы могут обеспечивать увеличение до 1250 раз с теоретическим пределом разрешения 0,250 микрометров. Тем не менее развитие сверхразрешенной флуоресцентной микроскопии в последнее десятилетие привело оптическую микроскопию в наноразмерность.

Варианты оптического микроскопа

  1. Стереомикроскоп: предназначен для наблюдения образцов в 3D при небольшом увеличении.
  2. Сравнительный микроскоп: используется для исследования бок о бок образцов.
  3. Поляризационный микроскоп: используется в оптической минералогии и петрологии для выявления минералов и горных пород в тонких срезах.
  4. Двухфотонный микроскоп: позволяет получать изображения живых тканей глубиной до 1 мм.
  5. Инвертированный микроскоп: исследует образец снизу; обычно используется для металлографии и клеточных культур в жидкости.
  6. Эпифлуоресцентный микроскоп: разработан для анализа образцов, содержащих флуорофоры.

Применение

Основные оптические микроскопы часто встречаются в классах и дома. Сложные широко используются в фармацевтических исследованиях, микробиологии, микроэлектронике, нанофизике и минералогии.

Они часто используются для исследования тканей с целью изучения проявлений заболеваний. В клинической медицине исследование биопсии или хирургического образца относится к гистопатологии.

2. Электронные микроскопы

Электронный микроскоп использует пучок ускоренных электронов для получения изображения образца. Точно так же, как оптические микроскопы используют стеклянные линзы, электронные микроскопы используют фасонные магнитные поля для создания систем электронно-оптических линз.

Поскольку длина волны электрона может быть намного короче, чем у фотонов, электронные микроскопы имеют более высокую разрешающую способность и увеличение, чем обычные оптические микроскопы. Они могут выявить структуры объектов размером с пикометр.

Первый электронный микроскоп, который превысил разрешение, достигнутое с помощью оптического микроскопа, был разработан немецким физиком Эрнстом Руской в ​​1933 году. С тех пор были сделаны многочисленные улучшения для дальнейшего улучшения увеличения и разрешения микроскопа.

Читайте так же:
Лучшие жесткие диски для ноутбуков

Современные электронные микроскопы способны увеличивать образцы до 2000000 раз, однако они все еще полагаются на прототип Руска (разработанный в 1931 году) и его связь между разрешением и длиной волны.

Электронные микроскопы имеют некоторые ограничения: они дороги в изготовлении, обслуживании и должны быть размещены в стабильных средах, таких как системы подавления магнитного поля. Также объекты должны просматриваться в вакууме.

Современный просвечивающий электронный микроскоп | Предоставлено: Дэвид Морган из Кембриджа, Великобритания.

Два основных типа электронного микроскопа

1. Просвечивающий электронный микроскоп: используется для наблюдения за тонкими образцами, через которые могут проходить электроны, создавая проекционное изображение. Он может захватывать мелкие детали размером с колонку атомов.

В этом случае образец обычно представляет собой очень тонкий срез (<100 нанометров), и изображение создается в результате взаимодействия образца с электронами при прохождении пучка через образец.

Современные аппаратные корректоры могут помочь этому микроскопу достичь высокого разрешения в 50 пикометров с увеличением, превышающим 50 000 000 раз.

2. Сканирующий электронный микроскоп: генерирует изображения образца путем сканирования его поверхности сфокусированным пучком электронов. Электроны взаимодействуют с атомами в образце и генерируют сигналы, которые содержат данные о составе образца и топографии поверхности.

Поскольку этот тип микроскопии отображает только поверхность (не внутреннюю часть) образцов, он обеспечивает низкое разрешение изображения по сравнению с просвечивающей электронной микроскопией. Тем не менее он может генерировать хорошее качество трехмерных изображений поверхности образца.

Вещи, которые вы можете наблюдать с помощью сканирующего электронного микроскопа, включают элементы на головке булавки, волосковые клетки внутреннего уха человека и поверхность глаза мухи.

Применение

Электронные микроскопы широко используются для изучения ультраструктуры различных неорганических и биологических образцов, таких как металлы, кристаллы, образцы биопсии, крупные молекулы, клетки и микроорганизмы.

Современные электронные микроскопы оснащены специальными цифровыми камерами и фрейм-грабберами для записи структуры образца и создания электронных микрофотографий.

Они часто используются в промышленных целях (для помощи в процессе производства) и в криминалистике (для предоставления доказательств в преступных и юридических целях).

3. Сканирующий зондовый микроскоп

Сканирующая зондовая микроскопия была открыта в 1981 году для изображения поверхности образца на атомном уровне. Он использует физический зонд для сканирования образца и формирования сильно увеличенных изображений.

Исходя из цели исследования, в сканирующей зондовой микроскопии используются разные методы.

Например, прибор может быть установлен в «режим постукивания», при котором кантилевер колеблется так, что наконечник периодически касается поверхности образца. Это в основном используется для изучения образцов с мягкими поверхностями.

В другом способе микроскоп может быть установлен в «режим контакта», при котором между острием кантилевера и поверхностью образца прикладывается постоянная сила. Этот режим быстро создает изображения поверхности.

В отличие от методов электронной микроскопии, образцы не требуют помещения в определенную вакуумную среду. Вместо этого они могут отображаться на воздухе при комнатном давлении и температуре или внутри жидкого реакционного сосуда. Однако, они часто не полезны для анализировать жидкост-жидкостные или твердотельные интерфейсы.

Современный сканирующий зондовый микроскоп

Распространенные типы сканирующих зондовых микроскопов

А) Атомно-силовой микроскоп: имеет разрешение порядка долей нанометра, что позволяет получать изображения практически любого типа поверхности, включая стекло, полимеры и биологические образцы.

B) Сканирующая оптическая микроскопия ближнего поля: может достигать производительности пространственного разрешения сверх классического дифракционного предела. Он может быть использован для изучения всех проводящих, непроводящих и прозрачных образцов.

Читайте так же:
Материнка ga ma770t ud3

C) Сканирующие туннельные микроскопы: могут достигать бокового разрешения 0,1 нм и глубины 0,01 нм. Образцы могут быть отображены в экстремальных условиях, при температурах от почти абсолютного нуля до более 1000 ° C.

Кроме того, сканирующий туннельный микроскоп был первым микроскопом, который использовал квантовые концепции , которые проложили путь к развитию квантового микроскопа запутывания и фотоионизационного микроскопа.

Применение

Сканирующие зондовые микроскопы используются в широком спектре естественных наук, включая медицину, клеточную и молекулярную биологию, физику твердого тела, химию полимеров и полупроводниковую науку и технику.

Например, в молекулярной биологии этот метод микроскопии используется для анализа структуры и механических характеристик белковых комплексов и сборок. В клеточной биологии он используется для определения взаимодействия между определенными клетками и различения нормальных клеток и раковых клеток на основе твердости клеток.

В физике твердого тела он используется для изучения взаимодействия между соседними атомами и изменений в расположении атомов посредством атомных манипуляций.

4. Сканирующие акустические микроскопы

Сканирующий акустический микроскоп измеряет изменения акустического импеданса с помощью звуковых волн. Он в основном используется для неразрушающей оценки, анализа отказов и выявления дефектов в недрах материалов, в том числе обнаруженных в интегральных микросхемах.

Этот тип микроскопа был впервые разработан в 1974 году в микроволновой лаборатории Стэнфордского университета. С тех пор были сделаны многочисленные улучшения для повышения его точности и разрешения.

Микроскоп непосредственно фокусирует звук от датчика в маленькой точке на образце. Звук, падающий на объекты, либо поглощается, либо рассеивается под разными углами. Эти рассеянные импульсы, распространяющиеся в определенном направлении, дают полезную информацию об образце.

Разрешение образца изображения либо ограничено шириной звукового луча (зависит от частоты звука), либо физическим разрешением сканирования.

В отличие от обычных оптических микроскопов, которые позволяют наблюдать поверхность образца, акустические микроскопы фокусируются на определенной точке и получают изображения из более глубоких слоев. Кроме того, они обеспечивают более точные результаты и увеличивают объём данных, сохраняя при этом целостность образца.

Сканирующий акустический микроскоп Sonix HS 1000

Применение

Многие компании используют этот тип микроскопии в аналитических лабораториях для определения качества своих электронных компонентов. Производители также используют его для контроля качества, квалификации поставщиков, тестирования надежности продукции, а также для исследований и разработок.

В биологии эти микроскопы предоставляют полезные данные о физических силах, удерживающих структуры в определенных формах, таких как эластичность клеток и тканей. Это чрезвычайно полезно при изучении процесса подвижности клеток (способность организма самостоятельно передвигаться, используя метаболическую энергию).

5. Рентгеновский микроскоп

Рентгеновские микроскопы генерируют увеличенные изображения объектов, используя электромагнитное излучение в мягком луче. Они способны выдавать 3D-изображение компьютерной томографии относительно больших образцов с высоким разрешением.

Для идентификации рентгеновских лучей, проходящих через образец, используется детектор с зарядовой связью. Поскольку рентгеновские лучи легко проникают сквозь вещество, микроскопы этого типа могут отображать внутреннюю часть образцов, непрозрачных для видимого света.

Современные рентгеновские микроскопы позволяют наблюдать различные образцы, в том числе те, которые имеют низкий контраст поглощения и более плотный материал, например керамические композиты. Чтобы достичь этого, микроскоп изменяет длину волны рентгеновского излучения, что увеличивает контраст или проникновение.

Читайте так же:
Есть ли смысл покупать ssd

Его разрешение лежит между оптической микроскопией и электронной микроскопией. В отличие от традиционных электронных микроскопов, рентгеновские микроскопы могут отображать толстые биологические материалы в их естественном состоянии.

Рентгеновский микроскоп ZEISS Xradia 510 Versa

Применение

Рентгеновская микроскопия оказалась чрезвычайно полезной в области медицины и материаловедения. Он был использован для анализа структуры различных тканей и образцов биопсии.

В области материаловедения рентгеновские микроскопы могут определять структуру кристалла вплоть до размещения отдельных атомов внутри его молекул. Он также обеспечивает неразрушающий, неинвазивный метод поиска дефектов в трех измерениях.

Флеш-память

Флеш-память относится к разновидности твердотельных накопителей. Это энергонезависимые запоминающие устройства, предназначенные для многократной перезаписи. Флеш-память может быть прочитана неограниченное число раз, но записывать в нее можно максимум около 100 тысяч раз.

В сравнении с жестким диском флеш-память имеет следующие достоинства:

  • меньшее время загрузки системы;
  • нет движущихся частей;
  • низкое потребление энергии;
  • полное отсутствие шума;
  • высокая механическая устойчивость;
  • малый размер и вес;
  • удобное подключения к компьютеру;

На основе флэш-памяти работают самые популярные и востребованные USB флэш-накопители и сменные карты памяти для электронных устройств, такие как SD, MMC, miniSD.

Как правильно выбрать оптический кросс?

Правильный выбор оптического кросса осуществляется с учетом особенностей конкретного проекта по простому алгоритму:

  • анализ места установки — выбор стоечного или настенного варианта, верхнего или нижнего кабельного ввода;
  • проверка общего числа волокон в проектируемом кабеле — выбор количества портов;
  • анализ используемых оптических коннекторов в сети — выбор нужного типа коннектора.

При затруднениях с выбором кроссового оборудования звоните, пишите, приезжайте к нам для получения оперативной и квалифицированной помощи.

Список

Клавиатура

На данный момент клавиатура представляет собой панель с расположенными на ней клавишами (механическими или сенсорными).

Тот стандарт клавиатуры, который мы знаем сейчас был разработан в 1980х годах. На данный момент большинство клавишных панелей для компьютера имеют 104-105 клавиш (стандарт IBM/Windows), которые делятся на такие группы как:

  1. Буквенно-цифровые (все буквы и цифры в левой части + Alt, Ctrl и т.д.);
  2. Цифровые (num keyboard);
  3. Кнопки для управления курсом (стрелочки);
  4. Командные (Escape, Tab и т.д.);
  5. И функциональные (F1-F12).

клавиатура

Мыши компьютерные

Второе по популярности, координатное устройство ввода информации в компьютер.

Первый экземпляр данного приспособления был представлен Дугласом Энгельбартом на выставке в Калифорнии, в 1968 году, а в 1970 он получил патент на свое изобретение.

Дуглас Энгельбарт

На данный момент большинство компьютерных мышей являются приборами с расположенными на них тремя кнопками, которые так и называются:

  1. Левая;
  2. Центральная;
  3. Правая.

Главным же элементом манипулятора является оптический датчик, при помощи которого и определяются координаты положения этого средства на поверхности. Большинство пользователей ПК застали три поколения оптических датчиков. Перечислим их:

  1. Датчики первого поколения (с шаровым приводом)
    Я думаю, что большинство пользователей помнит манипуляторы с шариками внутри. Недостатками таких приборов являлись требования к поверхности (обязательно приходилось покупать коврик), высокую стоимость и требование к обязательной чистоте поверхности для правильной работы датчика.
  2. Второго поколения
    Привычные всем манипуляторы с камерой и лазером внизу. К достоинствам таких девайсов относится возможность работать почти на любой поверхности (кроме зеркальных) без коврика и большая точность.
  3. Третьего поколения
    В отличие от второго поколения имеют более современный лазер, который обеспечивает большую точность. Также к достоинствам относятся пониженное энергопотребление, меньшая яркость датчика и большая надежность. Такие девайсы являются хорошим решением для кибер спортсменов.
Читайте так же:
Материнская плата asus ipibl lb

Устройства ввода - мышь

сенсор второго поколения

Сканер

Даже с развитием цифровых фото и видеокамер эти устройства до сих пор имеют широкое распространение. Это связано с двумя главными достоинствами данных приспособлений, которые мы перечислим ниже:

  1. Лучшее качество при получении «плоских» изображений.
  2. Естественная детализация и цветопередача.

Устройства ввода - сканер

Микрофоны

Если вам требуется указать устройство ввода звука в компьютер, то назовите микрофон.

Принцип работы данного девайса очень прост и его полезно знать. Волна, поступая из окружающей среды, оказывает давление на микрофонную мембрану, вследствие чего возникают электрические колебания.

устройства ввода - микрофон

После этого электрический сигнал обрабатывается аналого-цифровым преобразователем, в результате на выходе мы получим уже цифровые данные. Если вам это интересно, то прочитайте нашу статью про оцифровку звука. В ней мы указали и перечислили особенности процесса.

Игровые девайсы

Также нужно выделить внешние устройства ввода, которые относятся к игровому сегменту. Перечислим самые распространенные из них, их тоже будет полезно знать:

  1. Геймпады;
  2. Джостики;
  3. Иные контроллеры (рули, танцевальные панели, световые пистолеты).

Геймпады

Помимо кнопок, в современных девайсах, используются аналоговые стики, которые называются микроджойстиками. В качестве примера можно указать геймпады от Xbox и Play Station.

Также такие приспособления могут обладать дополнительными функциями, такими как:

  1. Подсветка;
  2. Вибрация;
  3. Обратная связь.

Геймпад

Джойстики

В отличие от геймпадов имеют другой форм фактор. Эти устройства выполнены в форме рычага и предназначаются для авиа симуляторов.

джойстик

Иные устройства

Сюда относятся все другие контроллеры, которые разработаны специально под какие либо игры. Друг от друга их отличает форм фактор. Перечислим примеры таких устройств.

  1. Пистолеты (например, для The House of The Dead);
  2. Гитары (Guitar Hero);
  3. Танцевальные площадки.

Устройства ввода - Guitar Hero

Как подключить кабель

Само подключение акустики к телевизору, другой техники через оптический вход не должно вызвать сложностей, но существует ряд моментов.

Прямое подключение через разъем

Коммуникационный оптический порт, как правило, закрыт защитной крышкой, которая исключает попадание пыли. Достаточно слегка нажать на неё коннектором, и она откроется, осуществив подключение. Если сигнал не пошёл, стоит проверить в настройках активные аудиовыходы, а также уровень громкости на подключённых устройствах.

Подключение через приставку или конвертер

Коаксиальный вход

Часто система домашнего кинотеатра собиралась поэтапно, в разные годы. Встречаются ситуации, когда у ресивера нет оптического входа.

В таком случае, чтобы добиться идеального звучания, используя оптоволокно, потребуется покупка специальной приставки, позволяющей осуществить подключение через оптику.

В такой приставке присутствует два разъёма для оптического и коаксиального кабеля. Для подключения системы следует:

  • вставить оптоволокно в выход телевизора, другого устройства;
  • соединить кабель с разъёмом на приставке;
  • через коаксиальный вход подключить аудиосистему.

Это простейший вариант преобразования аудиосигнала.

Продвинутым считается использование активного конвертера, превращающего цифровой сигнал формата 5.1 в аналоговый. Такой переходник обеспечивает ряд дополнительных опций, например, подключение других типов кабелей, наушников, игровой консоли.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector