Wlancards.ru

ПК техника, WI FI Адаптеры
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Можно ли вписать четырёхугольник в окружность? Когда можно вписать

Вписанной называется фигура, вершины которой располагаются на окружности. Все треугольники и правильные 4-угольники, вроде квадрата и прямоугольника, размещаются внутри круга, причём их вершины совмещаются с точками на окружности. Вокруг неправильной фигуры с четырьмя углами не всегда можно описать круг. Разбираемся, какие условия нужно выполнить для решения проблемы.

У квадрата и прямоугольника все углы прямые – равны 90°, но это не ключ к разгадке. Случай с параллелограммом тому подтверждение. Чем примечательны прямоугольные 4-угольники? Может дело в сумме углов?

Трапеция в круг вписывается, но только равнобедренная. Одно из её свойств – сумма внутренних углов равна 360°, а соседних – 180°. Получается, что четырехугольник можно вписать в окружность, если сумма противоположных углов равняется 180°. Проверим на практике.

Помните: правило применимо только для выпуклых фигур, расположенных по одну сторону от проходящих через все стороны прямых.

Вписанный

Выпуклый дельтоид вписывается в круг, когда имеет пару прямых углов – называется прямоугольным.

Выпуклый дельтоид вписывается в круг

Задача

Известны величины двух соседних углов вписанного четырёхугольника: 65° и 83°. Вычислить размеры сразу большего, затем – меньшего из оставшихся.

Известно, что сумма противоположных углов указанной геометрической фигуры равняется 180°. Отнимем от значения сначала большую цифру, затем – меньшую, чтобы выполнить условия задачи – найти неизвестные значения в указанном порядке.

180 – 65 = 115° – больший угол, 180 – 83 = 97° – меньший.

Особые линии и точки

Медиана, высота и биссектриса — 3 замечательные линии любого треугольника. Представляют они собой внутренние отрезки, построенные из углов на противоположные стороны. Линия, соединяющая вершину с серединой противоположной грани, называется медианой. Луч, разделяющий угол на 2 равные части — это биссектриса, а перпендикуляр, построенный к стороне — высота.

В любом правильном треугольнике можно начертить 3 отрезка. Если отложить медиану, а потом биссектрису и высоту, можно заметить, что эти линии совпадут. Эта особенность и есть замечательным свойством равностороннего многоугольника, то есть если в любой другой трёхугольной фигуре можно построить 12 особых линий, то в рассматриваемом только 3.

Доказать это утверждение можно следующим образом: пусть имеется треугольник АВС, в котором проведена высота ВH. Далее, рассуждения нужно построить так:

Если создать зеркальное отражение треугольнику и совместить его с оригинальным, все углы попарно совместятся. Совпадут и стороны. Так как ВH — высота, она перпендикуляр. Значит, в точке H отрезок образует прямой угол с боковой гранью AC. Отсюда следует, что образованные треугольники AHB и CBH прямоугольные.

Они являются равными по общей гипотенузе и острому углу. Это следует из того, что правильный многоугольник — частный случай равнобедренного. Так как треугольники совпадают, у них одинаковые углы ABH и CBH. Причём они смежные, поэтому BH — биссектриса. В то же время точка H делит AC на 2 равных отрезка, значит, BH — медиана.

Точка, в которой пересекаются отрезки, будет центром тяжести фигуры. Её особенность в том, что она разделяет эту линию на 2 части в отношении 2 к 1, если считать от угла. Кроме этого, из-за равенства медианы и биссектрисы эта точка будет и ортоцентром.

Пример задачи на понятия вписанной и описанной окружности

В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

Решение.

Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора $^2=^2-^2, BM=sqrt<^2-frac<^2><4>>=sqrt<25-16>=sqrt<9>=3$. $OM=OH=r$ — искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4 см$. Следовательно, $BH=5-4=1 см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

Читайте так же:
Можно ли мыться когда работает стиральная машина

Построение перпендикулярных прямых

Пример 1

Точка O находится на прямой a.

Есть прямая и точка, находящаяся на ней. Нанести линию, идущую через существующую точку и находящуюся под прямым углом к имеющейся прямой.

Шаг 1. Чертим круг с рандомным радиусом r с серединой в т. O. Окружность соприкасается с прямой в т. A и т. B.

Шаг 2. Из имеющихся точек строится круг с радиусом AB. Точки С и D являются точками соприкосновения окружностей.

Приложив линейку, чертят прямую, сквозь т. O и одну из т. C или т. D, к примеру отрезок OC.

Доказательство, что прямая OC лежит перпендикулярно a.

Намечаются два отрезка — AC и CB. Получившиеся треугольники будут равны, согласно третьему признаку равенства треугольников. Значит, прямая CO перпендикулярна AB.

703

Пример 2

Точка O находится вне прямой а.

Нарисовать окружность с радиусом r из т. O. Она должна проходить сквозь прямую a. A и B — точки её соприкосновения с прямой.

Оставив прежний радиус, рисуем окружности с серединой в т. A и т. B. Точка O1 — место их соприкосновения.

Рисуем линию, соединяющая т. O и т. O1.

Доказательство выглядит следующим образом.

Две прямые ОО1 и AB пересекаются в т. C. Согласно третьему признаку равенства всех треугольников AOB = BO1A. Из данного вывода следует, что угол OAC = O1AC. Одноименные треугольники также будут равны (согласно первому признаку равенства всех треугольников).

Исходя из этого, выводим, что угол OCA = O1CA, а, учитывая смежность углов, приходим к пониманию, что они прямые. А это означает, что OC – перпендикулярный отрезок, опущенный из т. O на прямую a. Задача решена.

Можно ли в любой треугольник вписать окружность?

В любой треугольник можно вписать окружность
Во-первых, окружность можно считать вписанной в треугольник, если все стороны этого треугольника касаются данной окружности. Другими словами, каждая сторона треугольника имеет общую точку с окружностью.
Согласно теореме, окружность можно вписать в любой из треугольников. Причем такая окружность для каждого отдельно взятого треугольника может быть только одна.
Рассмотрим ее доказательство.
Доказательство.
Построим треугольник и проведем в нем биссектрисы.
Все три биссектрисы любого треугольника пересекаются в одной точке.
Проведем из этой точки перпендикуляры к сторонам треугольника.
Из равенства треугольников, которые образованы биссектрисой и двумя проведенными перпендикулярами, следует, что все три перпендикуляра являются равными друг другу.
Мы получили, что на всех сторонах треугольника лежит точка, удаленная от точки пересечения его биссектрис на одинаковое расстояние.
Известно, что все радиусы в любой окружности являются равными.
Таким образом, мы получили, что точка пересечения биссектрис треугольника является центром окружности с радиусом, который равен длине перпендикуляра, проведенного из точки пересечения к сторонам треугольника.
Теорема доказана.

Около любого треугольника можно описать окружность. Она проходит через все вершины треугольника. Вы уже знаете, что точка пересечения серединных перпендикуляров равноудалена от вершин треугольника. Она и является центром описанной окружности.
В любой треугольник можно вписать окружность. Она касается всех сторон треугольника. Вы также знаете, что точка пересечения биссектрис треугольника равноудалена от сторон треугольника. Она и является центром вписанной окружности.
А можно ли описать окружность около любого параллелограмма? Если попробовать это сделать, то окажется, что около параллелограмма можно описать окружность, только если он — прямоугольник. Мы узнаем, каким свойством обладают вписанные и описанные четырехугольники и какие признаки позволяют судить о том, можно ли около данного четырехугольника описать и можно ли в него вписать окружность.
И вдобавок мы познакомимся с одной важной формулой площади треугольника S = рr.

ТАБЛИЦА «Описанные и вписанные окружности»

1. Окружность, описанная около треугольника.

Окружность называется описанной около треугольника, если она проходит через все его вершины.
Теорема. Вокруг любого треугольника можно описать окружность, и только одну. Ее центр лежит на пересечении серединных перпендикуляров к сторонам треугольника.
Доказательство. Точка пересечения серединных перпендикуляров к сторонам треугольника равноудалена от его вершин (доказано нами в 7 классе). Поэтому она является центром описанной окружности, расстояние от этой точки до любой из вершин равно радиусу.
Если существует еще одна описанная окружность, то ее центр равноудален от всех трех вершин и поэтому совпадает с точкой пересечения серединных перпендикуляров, а радиус совпадает с радиусом первой окружности. Окружности совпадают.

Читайте так же:
Можно ли удалить аск

2. Окружность, описанная около прямоугольного треугольника.

Теорема. Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, а радиус окружности равен половине гипотенузы.
Доказательство. Мы знаем, что медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы (доказано нами в 7 классе). Поэтому середина гипотенузы является центром описанной окружности, а ее радиус равен половине гипотенузы, т. е. R = c/2.

3. Окружность, вписанная в треугольник.

Окружность называется вписанной в треугольник, ест она касается всех сторон треугольника.
Теорема. В любой треугольник можно вписать окружность, и только одну. Ее центр лежит на пересечении биссектрис треугольника.
Доказательство. Точка пересечения биссектрис треугольника равноудалена от сторон треугольника (доказано нами в 7 классе). Если из этой точки опустить перпендикуляры на стороны и провести окружность радиусом, равным перпендикуляру, то стороны треугольника будут касаться окружности по признаку касательной.
Если существует еще одна вписанная окружность, то ее центр равноудален от всех трех сторон и поэтому совпадает с точкой пересечения биссектрис, а радиус совпадает с радиусом первой окружности. Окружности совпадают.

4. Формула площади S = рr.

Теорема. Площадь треугольника S = рr, где р — полупериметр треугольника, r — радиус вписанной окружности.
Доказательство. Соединим центр вписанной окружности с вершинами треугольника, стороны которого равны а, b и с. Получим три треугольника, для которых радиусы вписанной окружности, проведенные в точки касания, являются высотами. Площадь данного треугольника равна сумме площадей этих треугольников:
где p — полупериметр треугольника.
Данная формула справедлива для любого многоугольника, в который можно вписать окружность, т. е. для любого описанного многоугольника. Доказательство аналогично.

5. Окружность, вписанная в прямоугольный треугольник.

Теорема. Радиус окружности, вписанной в прямоугольный треугольник, находится по формуле r = (а + b – c)/2.
Доказательство. Проведем радиусы в точки касания. Получим квадрат со стороной r (четырехугольник, у которого все углы прямые и две соседние стороны равны по r) и отрезки катетов, равные r и а – r для катета а, r и b – r для катета b. Так как отрезки касательных, проведенных из одной точки, к окружности равны, то гипотенуза равна сумме отрезков (a – r) и (b – r). Так как с = (а – r) + (b – r), то r = (а + b – c)/2.

6. Свойство вписанного четырехугольника.

Теорема (свойство вписанного четырехугольника). Если четырехугольник вписан в окружность, то суммы его противоположных углов равны по 180°.
Доказательство. Противоположные углы ? и ? являются вписанными. Они опираются на дуги, которые дополняют друг друга до окружности. Окружность содержит 360°. Так как вписанный угол равен половине дуги, на которую он опирается, то сумма углов ? и ? равна 180°.

7. Признак вписанного четырехугольника.

Окружность называется вписанной в треугольник, если все стороны треугольника касаются этой окружности. В таком случае треугольник называют описанным вокруг окружности.
Рассмотрим вопрос о том, в какой треугольник можно вписать окружность.
У каждой вписанной окружности есть определенные свойства:
В один треугольник может быть вписана окружность, причем только одна.
Центр вписанной окружности размещен на одинаковом расстоянии от всех сторон треугольника и лежит на пересечении его биссектрис.
Обратим внимание, что окружность можно вписать абсолютно в любой из видов треугольников: прямоугольный, тупоугольный, остроугольный, равнобедренный, равносторонний или произвольный.
Для каждого из видов треугольников существуют формулы, которые позволяют найти радиус вписанной в них окружности через длину его сторон, периметр или полупериметр треугольника, высоты треугольника, площадь треугольника.
Обратим внимание, что свойства вписанной в треугольник окружности следуют из свойств биссектрисы угла треугольника.
Согласно основному свойству биссектрисы, любая ее точка находится на одинаковом расстоянии от сторон угла, который она делит на 2 равные части. Соответственно, эти расстояния могут быть радиусами какой-нибудь вписанной окружности.

Читайте так же:
Можно ли отследить сообщения в whatsapp

Теорема 3. Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство. Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC, и обозначим точку их пересечения буквой O (рис. 6).

Рис.6
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC, то в силу теоремы 1 справедливо равенство:
CO = AO .
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB, то в силу теоремы 1 справедливо равенство:
AO = BO .
Следовательно, справедливо равенство:
CO = BO ,
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие. Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство. Рассмотрим точку O, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
AO = OB = OC ,
из которого вытекает, что окружность с центром в точке O и радиусами OA, OB, OC проходит через все три вершины треугольника ABC, что и требовалось доказать.
Теорема 4 (теорема синусов). Для любого треугольника (рис. 7)

Рис.7
справедливы равенства:
.
Доказательство. Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R, на которую опирается вписанный угол величины φ , вычисляется по формуле:
l = 2Rsin φ .(1) Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Рис.8
Угол MPN, как угол,опирающийся на диаметр, является прямым угломугол,опирающийся на диаметр, является прямым углом, и равенство (1) вытекает из определения синуса угла прямоугольного треугольника.
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Теорема синусов доказана.

На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Цели урока:

  • Углубить знания по теме «Описанная окружности в треугольниках»

Задачи урока:

  • Систематизировать знания по этой теме
  • Подготовиться к решению задач повышенной сложности.

План урока:

  1. Введение.
  2. Теоретическая часть.
  3. Для треугольника.
  4. Практическая часть.

Введение.

Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы.
Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.

Теоретическая часть.

Описанная окружность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать O) пересечения серединных перпендикуляров к сторонам многоугольника.

Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).
Вокруг любого правильного многоугольника можно описать окружность.

08022011 1.png

Для треугольника.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Окружность, описанная

вокруг треугольника

Вокруг любого треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров.

У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.

08022011 4.png08022011 5.png08022011 6.png
ОстроугольныйТупоугольныйПрямоугольный

Радиус описанной окружности может быть найден по формулам:

08022011 9.png

08022011 10.png

Где:
a,b,c — стороны треугольника,
α — угол, лежащий против стороны a,
S — площадь треугольника.

08022011 0.jpg

Файл:T.gif Теорема. Теорема о центре окружности, описанной около треугольника.

Читайте так же:
Можно ли класть плитку на старую краску

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.

Доказательство.

Пусть ABC – данный треугольник и O – центр окружности описанной около данного треугольника. Δ AOB – равнобедренный ( AO = OС как радиусы). Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину. Так же доказывается, что центр окружности на перпендикулярах к другим сторонам треугольника.

Теорема доказана.

Рассмотрим подробнее этот случай.
Дано:

ΔABC, окр (О, ОА) — описана около ΔABC

т.О — точка пересечения серединных перпендикуляров к сторонам ΔABC

Доказательство:

  1. ΔAОC — равнобедренный, т.к. ОА=ОС (как радиусы)
  2. ΔAОC — равнобедренный, перпендикуляр OD — медиана и высота, т.е. т.О лежит на серединном перпендикуляре к стороне АС
  3. Аналогично доказывается, что т.О лежит на серединных перпендикулярах к сторонам АВ и ВС

Что и требовалось доказать.

Прямую, проходящую через середину отрезка перпендикулярно к нему, часто называют серединным перпендикуляром. В связи с этим иногда говорят, что центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.

Файл:T.gif Теорема. Теорема об окружности, описанной около треугольника. Около любого треугольника можно описать окружность.

АВС — данный треугольник; О — точка пересечения серединных перпендикуляров (рис. 31).

08022011 8.jpg

О — центр окружности, вписанной в АВС.

Доказательство:

Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведем отрезки ОА, ОВ и ОС. Так как точка О равноудалена от вершин треугольника АВС, то ОА=OB=ОС. Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и, значит, является описанной около треугольника ABC.

Отметим, что около треугольника можно описать только одну окружность. В самом деле, допустим, что около треугольника можно описать две окружности. Тогда центр каждой окружности равноудален от вершин треугольника и, значит, совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают.

Практическая часть.

Около равнобедренного треугольника с основанием AC и углом при основании 75˚ описана окружность с центром O.

08022011 11.JPG

Найдите ее радиус, если площадь треугольника BOC равна 16.

∆ ABC – равнобедренный, AC – основание, ∠ ACB = 75˚,
площадь ∆ BOC равна 16
Найти:

Радиус описанной окружности

Проведем медианы AF, CE, BH
∆ ABC – равнобедренный, BH – медиана, следовательно, BH – высота, а значит ∆ HBC – прямоугольный
ﮮ HBC = 90˚ — ﮮ ACB, ﮮ HBC = 90˚ — 75˚ = 15˚
BO = OC = R, следовательно, ∆ BOC – равнобедренный, значит ﮮHBC = ﮮECB = 15˚
ﮮ COB = 180˚ — (ﮮ HBC + ﮮECB), ﮮ COB = 180˚ — (15˚ + 15˚) = 150˚

S = 1/2 ∙ BO ∙ OC ∙ sin ﮮ BOC (теорема о площади треугольника),

SBOC = 1/2 ∙ R ∙ R ∙ sin 150˚ = 1/2 ∙ R ∙ R ∙ 1/2 = 1/4 ∙ R 2 ;

R 2 = 16 : 1/4 = 64;

Треугольник BMP с углом B, равным 45˚, вписан в окружность радиуса 6.

Найдите длину медианы BK, если BK пересекает окружность в точке C и CK = 3.

08022011 12.JPG

Решение:
ﮮ MOP = 2 ﮮMBP
ﮮ MOP = 2 ∙ 45˚ = 90˚, следовательно, ∆ MOP – прямоугольный
MP 2 = OM 2 + OP 2
MP 2 = 62 + 62 = 36 + 36 = 36 ∙ 2
MP = 08022011 13.JPG
MK = KP = 0,5 ∙ MP
MK = KP = 0,5 ∙ 08022011 14.JPG= 08022011 15.JPG
MK ∙ KP = BK ∙ KC
08022011 15.JPG08022011 15.JPG = BK ∙ 3
BK ∙ 3 = 9 ∙ 2
BK ∙ 3 = 18
BK = 6
Ответ: BK = 6

Остроугольный равнобедренный треугольник BCD с основанием CD, равным 16, вписан в окружность с центром O и радиусом 10. Найдите площадь треугольника BOC.

08022011 16.JPG

08022011 17.JPG

Интересный факт:

Софизм – это последовательность высказывания, рассуждений, построений, содержащая скрытую ошибку, за счет чего удается сделать неверный вывод. Задача обычно заключается в том, чтобы найти ошибку в рассуждениях.

Читайте так же:
Можно ли сортировать по алфавиту в ворде

Найдите ошибку в «доказательстве» того «странного» факта, что окружность имеет два центра.

Доказательство.

Пусть даны две непараллельные прямые a и b. Из точек А и В этих прямых поставим перпендикуляры до пересечения в точке С. Через три точки А, В и С проведем окружность, пересекающую прямую а в точке М, а прямую b в точке N. По построению ∠MAC = ∠NBC = 900, значит, эти углы опираются на диаметры МС и NC построенной окружности. Середины этих диаметров – точки О1 и О2 – центры одной и той же окружности.

Ошибка в следующем:

∠MAC = ∠NBC = 900 (по построению). Эти углы являются вписанными и опирающимися на одну и туже дугу (в нашем случае, на полуокружность), поэтому точки О1 и О2 совпадают и лежат на отрезке DC (DC – биссектриса угла ADB).

  1. Сформулируйте определение окружности и круга?
  2. Что такое Софизмы?
  3. Какая разница между диаметром и радиусом?
  4. Как найти радиус окружности какая описана около треугольника?

Список использованных источников:

  1. Урок на тему «Наглядная геометрия» Автор: Самылина Марина Валентиновна., г. Киев
  2. «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
  3. Мазур К. И. «Решение основных конкурсных задач по математике сборника под редакцией М. И. Сканави»
  4. Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина «Геометрия, 7 – 9: учебник для общеобразовательных учреждений»


Над уроком работали:

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме, где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.

Можно ли любой треугольник вписать в окружность

Вопрос по геометрии:

сформулируйте и докажите теорему об окружности вписанной в треугольник? сколько окружностей можно вписать в данный треугольник?

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

  • 13.07.2016 23:25
  • Геометрия
  • remove_red_eye 11712
  • thumb_up 45
Ответы и объяснения 1

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Доказательство.

Пусть ABC данный, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Δ AEO = Δ AOD по гипотенузе и катету (EO = OD – как радиус, AO – общая). Из равенства треугольников следует, что ∠ OAD = ∠ OAE. Значит AO биссектриса угла EAD. Точно также доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.

В треугольник всегда можно вписать окружность,и при том только одну.

Изображение к ответу

  • 15.07.2016 06:34
  • thumb_up 8
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector